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Why Bayesian neural networks?

Bayesian inference allows us to:

• Represent uncertainty.

• Encode prior beliefs.

• Trade off exploration and exploitation (RL, active learning,
BayesOpt).

• Provide framework for continual learning.

BNNs aim to combine benefits of deep learning and Bayesian
inference

Filos et al. [2019] Yang et al. [2020]
Deisenroth and
Rasmussen [2011]

Pan et al. [2020]



Bayesian neural networks

Probabilistic model:

• Input x , weights θ, neural network fθ.

• Likelihood p(D|θ) :=
∏N

n=1 p(yn|xn, θ) =
∏N

n=1 p(yn|fθ(xn)).

• Prior p(θ).

Conventional training

Optimise: θMAP = arg maxθ [log p(D|θ) + log p(θ)].
Predict: p(y∗|x∗, θMAP).

Bayesian inference

Bayes’ theorem: p(θ|D) ∝ p(D|θ)p(θ).
Predict: p(y∗|x∗,D) = Ep(θ|D) [p(y∗|x∗, θ)].

Bayesian approach not without its challenges!



First main challenge — the prior

1 How can we specify a good prior?
• Model mismatch can lead to poor predictions.
• Often factorised Gaussian for convenience.
• Prior sampling can yield insights:

BNN sample from Neal [1995]

Typical prior predictive from Wenzel
et al. [2020]



Second main challenge — the posterior

2 How can we perform good inference?
• Need to approximate high-dimensional integral.
• Difficult to verify if approximation has succeeded.
• Is performance due to the model or to the approximation?

These two challenges are linked.

• Often priors are chosen by evaluating the posteriors they induce.
“Ye priors shall be known by their posteriors” [Good, 1983].

• Lack of reliable inference hampers prior evaluation.

This talk will focus on analysing approximate inference.



Approximate inference

We focus on approximating family methods, which assume some
tractable parametric form:

Ep(θ|D) [p(y∗|x∗, θ)] ≈ Eqφ(θ) [p(y∗|x∗, θ)] , qφ(θ) ∈ Q.

• Q is the approximating family, e.g. set of Gaussian distributions
over θ.

• φ are parameters, e.g. mean and covariance matrix.

• Approximate inference amounts to choosing φ.

• E.g. Laplace approximation, expectation propagation, variational
inference (VI).



Variational inference recap

• Choose q ∈ Q that minimises KL(qφ(θ)‖p(θ|D)).

• In practice optimise ELBO: Eqφ(θ) [log p(D|θ)]−KL(qφ(θ)‖p(θ))

• Converts integration into optimisation.

• If p(θ|D) ∈ Q, then qφ∗(θ) = p(θ|D).

Q

• qφ0(θ)

•qφ∗(θ)
• p(θ|D)



Examples of approximating family methods

Exact posterior, Laplace, variational inference. From Bishop [2006].

Laplace and VI here share the same Gaussian Q, but choose φ differently.



Approximating families

Many choices for Q available.

• Mean-field/fully-factorised Gaussian QMF [Denker and LeCun,
1990, Hinton and Van Camp, 1993]:

qφ(θ) =
∏
i

N (θi ;µi , σ
2
i ).

• Full-covariance Gaussian QFC [MacKay, 1992, Barber and Bishop,
1998]:

qφ(θ) = N (θ;µ,Σ).

• Monte Carlo Dropout, QDO [Gal and Ghahramani, 2016].

Ŵ = W diag(ε),

where ε is a vector of Bernoulli random variables.



Choosing approximating families

How should we choose the approximating family? This is an old question.

MacKay on Laplace with QMF vs QFC :

“The diagonal approximation is no good because of the strong
posterior correlations in the parameters.” — MacKay [1992]

Hinton & van Camp’s response on VI with QMF :

“It is not clear how much is lost by ignoring the off-diagonal
terms. . . because in this case the [variational] learning will try to
force the noise in the weights to be independent.”

— Hinton and Van Camp [1993]

In modern BNNs QMF or QDO preferred. Can we justify this choice?



Criteria for success

For an approximating family method to succeed, it must satisfy two
criteria:

1 The approximating family must contain good
approximations to the posterior.

2 The method must then select a good approximate
posterior within this family.

Here, ‘good approximation’ usually defined in function space:

• We often don’t care about the weights θ!

• Interested in predictive Ep(θ|D) [p(y∗|x∗, θ)].

• Can make assessing impact of approximations less straightforward.



Example: weight space vs function space

Mean-field VI on Bayesian linear regression with RBF features:

y(x) =
10∑

i=−10
wiψi (x), ψi (x) = exp(−(x − i)2), wi ∼ N (0, 1)

w 3

w
4

Exact
Approx.

MFVI overconfident in weight space
as expected.

Exact
Approx.

But predictions in function space
quite accurate! Note “in-between”
uncertainty.

• Weight-space behaviour doesn’t immediately carry over to
function-space.

• What about for BNNs?



References for the exact posterior

Need good reference to assess inference.

• Exact inference impossible.

• Hamiltonian Monte Carlo possible, but slow, and hard to diagnose.

Deep BNNs approach Gaussian processes as width increases
[Matthews et al., 2018, Hron et al., 2020].

3 hidden-layer, width 50 BNN vs. GP. From Matthews et al. [2018].

• We use both HMC and GP as references.

• GP expected to be qualitatively suggestive of exact posterior.



How does MFVI compare with GP?
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Here’s how the GP does:

GP BayesOpt using upper confidence bounds: iteration 1
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How does MFVI compare with GP?

Bayesian optimisation on toy dataset, using

1 single hidden layer MFVI
2 the equivalent infinite-width GP

GP finds optimum in 3 iterations.

GP BayesOpt using upper confidence bounds: iteration 3
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Bayesian optimisation on toy dataset, using

1 single hidden layer MFVI

2 the equivalent infinite-width GP

Here’s how the MFVI BNN does:
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How does MFVI compare with GP?

Bayesian optimisation on toy dataset, using

1 single hidden layer MFVI
2 the equivalent infinite-width GP

MFVI still can’t find optimum after 15 iterations! Why?

MFVI BayesOpt using upper confidence bounds: iteration 15



1HL Dropout BNNs → convex predictive variance

Let V[f (x)] := E[(fθ(x)− E[fθ(x)])2] be predictive variance at x .

Theorem 1 (F., B., Li & Turner 2020).

For any single hidden layer network with ReLU nonlinearities and
a distribution of weights in QDO , if dropout is not applied to the
input layer, V[f (x)] is convex in x .

• 1HL dropout networks with ReLU activations can’t have
in-between uncertainty!

• A weaker statement is true if input layer is also dropped out.



Proof sketch of theorem 1

Dropout applied independently to each neuron, so:

V[f (x)] = V

[
H∑
i=1

wiφ (ai (x)) + b

]
(1)

=
H∑
i=1

V [wiφ (ai (x))] + V[b] (2)

• As the input weights are deterministic,

V [wiφ (ai (x))] = V [wi ]φ (ai (x))2

• ai (x) is an affine function of x , and φ2 is convex, so φ (ai (x))2 is
convex in x .

• V[f (x)] is a positive linear combination of convex functions!



Numerical verification of theorem 1

• Obtain reference predictive variance function from a GP.

• Perform gradient descent to directly minimise
(Vdropout[f (x)]− Vtarget[f (x)])2 on a grid.

MC dropout predictive variance can’t match target variance even when
explicitly trained to, due to theorem 1.



What about mean-field QMF?

• In dropout proof, we used that the bottom layer was deterministic.

• Does a similar result hold for mean-field Gaussian QMF , where
bottom layer is stochastic?

Theorem 2 (F., B., Li & Turner 2020).

There exist line segments in input space, −→pq, such that for any
single hidden layer network with ReLU nonlinearities and a
distribution of weights in QMF , for all r ∈ −→pq,

V[f (r)] ≤ V[f (p)] + V[f (q)].

Constraint is weaker than convexity in theorem 1, but still implies a lack
of in-between uncertainty!



Line segments of bounded variance

2 example line segments in BNN input space where theorem 2 applies.

• V[f (r)] ≤ V[f (p)] + V[f (p)] on the red line segment.

• If input is 1-dimensional, applies to any line segment crossing origin.

• Empirically find in-between uncertainly lacking on random line
segments.

• Could be symptomatic of more general pathologies.



Numerical verification of theorem 2

• Obtain reference predictive variance function from a GP.

• Perform gradient descent to directly minimise
(Vmean-field[f (x)]− Vtarget[f (x)])2 on a grid.

Fully-factorised Gaussian (FFG) BNN predictive variance can’t match
target variance even when explicitly trained to, due to theorem 2.



Intuition for theorem 2

Proof more involved than dropout case.
• Single hidden layer NNs are universal function approximators.
• Surprising that variance of a mean-field BNN is not universal!

Intuition:

Mean field =⇒ Variance of sum = Sum of variances

But variance of each neuron is half bowl shaped:
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So variance of any sum is approximately bowl-shaped.



What about an actual inference task?

References for exact predictive show plenty of in-between uncertainty.



What about an actual inference task?

• VI with QMF or QDO loses in-between uncertainty.
• In this case, approximate inference, rather than the model,

responsible for overconfidence!



Back to the criteria

1 The approximating family must contain good
approximations to the posterior. 7

2 The method must then select a good approximate
posterior within this family.

If in-between uncertainty desired, the first criterion is not satisfied for
QMF or QDO with one hidden layer.

Hence cannot be fixed by:

• Choosing a better prior.

• Using a better optimiser.

• Using a tempered posterior, e.g., Wenzel et al. [2020].

• Minimising a different divergence.

• Etc.

What about deeper networks?



Deep networks can have in-between uncertainty

Theorem 3 (F., B., Li & Turner 2020).

Let A ⊂ Rd be compact, and m : A→ R, v : A→ R+ be both
continuous. For any ε > 0, there exists a sufficiently wide 2HL
ReLU network f , s.t. we can find a distribution in Q with
‖E[f ]−m‖∞ < ε and ‖V[f ]− v‖∞ < ε; where Q ∈ {QDO ,QMF}.

• Universality theorem for first two moments of marginal of predictive
distribution of random networks.

• Just because these networks exist doesn’t mean they are easy to
find with conventional approximate Bayesian inference (e.g. VI).

• N.B. Only applies to QDO if dropout is not applied to input layer.



Construction for mean-field QMF

Input
Hidden
layer 1

Hidden
layer 2

Output

z1

x1 z2

z3 m+b

x2 z4 f

z5
√
v

x3 z6 1

N (1, 0)

N (−b, 0)
N (0, 1)

with b = minx∈Am(x).
So f ≈ 1 · φ(m + b) + γ · φ(

√
v)− b ≈ m + γ

√
v , γ ∼ N (0, 1).



Numerical verification of Theorem 3

Try to fit mean and variance function from before, but with 2HL net:
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Variational Inference in Deep Nets

Does theorem 3 imply good uncertainty quantification with VI in
deep BNNs?
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Variational Inference in Deep Nets

Does theorem 3 imply good uncertainty quantification with VI in
deep BNNs?
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Overconfidence ratio (VGP [f ]/VMFVI [f ])1/2 between two clusters of data.



Effect of initialisation

Is this behaviour due to the objective, the optimiser, or something else?

• Initialise 2HL BNN by matching GP mean and variance.
• Then optimise mixture of ELBO and squared error objective.
• Gradually move to just optimising ELBO.

BNN that starts with in-between uncertainty loses it once ELBO optimisation
converges!



Limitations of Theorem 3

• Unclear how wide is “sufficiently wide”.

• Only tells us about one-dimensional marginal distributions.

• Only tells us about first and second moments.

• Doesn’t tell us how to find these ‘good’ approximate posteriors.

For in-between uncertainty in VI in deep BNNs with QDO ,QMF :

Criteria for success

1 The approximating family must contain good
approximations to the posterior. 3

2 The method must then select a good approximate
posterior within this family. 7



Active learning case study

• Goal is to select informative data points to label.

• Common heuristic: Select points with high predictive variance.

• How do issues with uncertainty estimation affect performance?

• We consider a dataset where we observe active learning fails.

• Naval regression dataset, N = 11934, D = 14.

Table 1: Test RMSEs after 50th iteration of active learning.

1 HL 4 HL

NN-GP Active 0.04± 0.00 0.05± 0.00
NN-GP Random 0.12± 0.01 0.16± 0.01

MFVI Active 0.94± 0.11 0.31± 0.02
MFVI Random 0.15± 0.01 0.32± 0.01

Can in-between uncertainty explain why active learning fails to improve
over random for MFVI?



t-SNE plot of 1HL NN-GP acquisitions

• Points chosen at ‘corners’ of clusters.

• Every cluster sampled.



t-SNE plot of 1HL MFVI acquisitions

• ‘Outermost’ clusters favoured.
• ‘In-between’ clusters ignored.
• Effect lessens somewhat in deeper networks, but:

• Approximate inference still much worse than exact NN-GP.
• Struggles to outperform random.



Limitations and follow-up work

Limitations:

• Theorems don’t explain empirical behaviour of deep BNNs.

• When is in-between uncertainty actually important?

• Focus on regression, not classification.

• Very difficult to find reliable references for the true posterior in big
networks.

Subsequent work (Farquhar et al. [2020]), claims QMF less restrictive in
deeper nets. However:

• We observe lack of in-between uncertainty in deep nets trained with
VI.

• Some conclusions rely on performance of methods on benchmarks
such as ImageNet 6= accurate posterior inference.



Conclusions

• Approximate inference with QMF and QDO in BNNs can lose
qualitative features of the exact predictive.

• In 1HL BNNs, in-between uncertainty is provably absent.

• In deeper BNNs, in-between uncertainty is empirically lost.

• In-between uncertainty can mean the difference between
outperforming random baseline and not, in active learning.

• Further work is needed to understand exact vs. approximate
inference in, e.g. large convolutional networks.

Thanks for listening!
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