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Abstract

Sparse variational inference in Gaussian process regression has theoretical guarantees that
make it robust to over-fitting. Additionally, it is well-known that in the non-sparse regime,
with M ≥ N, variational inducing point methods can be equivalent to full inference. In this
paper, we derive bounds on the KL-divergence from the sparse variational approximation
to the full posterior and show convergence for M on the order of log(N) inducing features
when using the squared exponential kernel.

1. Introduction

Gaussian processes can model complex functions, are robust to over-fitting and provide
uncertainty estimates. In the case of regression, the marginal likelihood and predictive pos-
terior can be calculated in closed form. However, this becomes computationally intractable
for large data sets. The variational framework by Titsias (2009) approximates the model
posterior with a simpler Gaussian process. This approximation retains many of the desir-
able properties of non-parametric models, in contrast to parametric model approximations
of Quiñonero Candela and Rasmussen (2005). A precise treatment of the KL-divergence
between stochastic processes is given in Matthews et al. (2016). While the variational ap-
proximation provides an objective function (ELBO) for selecting the hyperparameters, it
can introduce bias into the selection process (Turner and Sahani, 2011). However, if the
gap between the ELBO and the log marginal likelihood at the optimum choice of hyperpa-
rameters is small, the optimization will result in a choice of hyperparameters similarly good
to those learned using the marginal likelihood.

In this work, we introduce eigenfunction inducing features, an inter-domain feature in
the style of Lázaro-Gredilla and Figueiras-Vidal (2009), based on the eigendecomposition of
the kernel. We obtain bounds on the KL-divergence for sparse inference with these features
and give theoretical insight into the number of features needed to approximate the posterior
process. These features also result in a diagonal covariance that can lead to computational
gains (Burt et al., 2018).

2. Bounds on the Marginal Likelihood

The log marginal likelihood for regression with a mean-centered Gaussian process prior
with covariance function k(·, ·), used to regress D = {xi,yi}Ni=1, is given by (Rasmussen and

c© 2018. D. Burt, C.E. Rasmussen & M. van der Wilk.



Convergence for Sparse Inference in Gaussian Process Regression

Williams, 2006):
L = log (p(y)) , (1)

where y is distributed according to N
(
y; 0,Kf,f + σ2noiseI

)
, σ2noise is the likelihood variance

and Kf,f is the data covariance matrix, with (Kf,f )i,j = k(xi,xj). Titsias (2009) provided

an ELBO for (1) based on using a subset of “inducing features,” {um}M−1m=0 .

L ≥ Llower = log
(
N
(
y; 0,Qf,f + σ2noiseI

))
− t

2σ2noise
. (2)

where t = tr (Kf,f −Qf,f ) ,Qf,f = KT
u,fK

−1
u,uKu,f , (Ku,f )m,i = cov(um, f(xi)) and (Ku,u)m,n =

cov(um,un).
This ELBO is commonly used as a computationally tractable objective function for

learning hyperparameters. Moreover, Matthews et al. (2016) showed that the gap between
the log marginal likelihood and the evidence lower bound is the KL divergence between the
posterior Gaussian process and the process used in approximate inference.

Instead of bounding L − Llower directly, we bound the gap between the ELBO and an
upper bound on the marginal likelihood (Titsias, 2014):

L ≤ Lupper = log
(
N (y; 0,Qf,f + tI + σ2noiseI)

)
+

1

2
log
(
|Qf,f + tI + σ2noiseI|

)
− 1

2
log
(
|Qf,f + σ2noiseI|

)
. (3)

If t = 0, Llower = L = Lupper, so in order to obtain a bound on the KL-divergence, it suffices
to bound t. Explicitly,

Lemma 1 With the same notation as in (3),

KL(Q‖P̂ ) ≤ t

2σ2noise

(
1 +

‖y‖22
σ2noise + t

)
. (4)

where P̂ is the full posterior process and Q is the variational approximation. Note that
under mild conditions, ‖y‖22 = O(N).

The proof is provided in Appendix A. Explicitly writing out the diagonal entries in Kf,f −
Qf,f in order to bound t is difficult due to inverse matrix K−1u,u appearing in the definition
of Qf,f .

3. Eigenvalues and Optimal Rate of Convergence

Before proving upper bounds on t, we consider a lower bound. As observed in Titsias (2014),
t is the error in trace norm of a low-rank approximation to the covariance matrix, so

t ≥
N∑

m=M+1

γm (5)

where γm denotes the mth largest eigenvalue of Kf,f .
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Generally, computing eigenvalues and eigenvectors of a large matrix is costly. However,
as observed in Williams and Seeger (2001), as N →∞ if the training points are i.i.d random
variables drawn according to the probability measure ρ the eigenvalues of Kf,f converge to
those of the operator

Kρf →
∫
X
f(x)k(x,x′)dρ(x). (6)

3.1. Connection to the Nyström Approximation

In the case of inducing points subsampled from the data, the matrix Qf,f is a Nyström
approximation to the Kf,f (Williams and Seeger, 2001). Therefore, any bound on the
rate of convergence of the Nyström approximation, for example (Gittens and Mahoney,
2013, Lemma 2), can be used in conjunction with Lemma 1 to yield a bound on the KL-
divergence. While Gittens and Mahoney (2013, Lemma 2) yields similar asymptotic (in M)
behavior to the bounds we prove, due to large constants in their proof, direct application
of their result to this problem appears to require tens of thousands of points. Additionally,
a proper analysis when M is allowed to grow as a function of N involves bounding rates of
convergence of the kernel matrix spectrum to the operator spectrum.

Instead, we introduce eigenfunction features, defined with respect to K which yield
elegant analytic upper bounds on t. These bounds asymptotically (in N) match the lower
bound (5). Eigenfunction features are defined so as to be orthogonal, greatly simplifying
the computation of t because Ku,u = I.

3.2. Eigenfunction Inducing Features

Mercer’s theorem tells us that

k(x,x′) =

∞∑
m=1

λmφm(x)φm(x′), (7)

where (λm, φm)∞m=0 are the eigenvalue-eigenfunction pairs of Kρ, which we assume are sorted
so that λm > λm+1 > 0 for all m. We define eigenfunction inducing features by,

um =

∫
X
f(x)

1√
λm

φm(x)dµ(x).

where µ is a probability measure that can be treated as a variational parameter.
Using the orthogonality of eigenfunctions and the eigenfunction property it can be shown
that,

cov(um, f(x)) =
√
λmφm(x) and cov(um,u

′
m) = δm,m′ . (8)

3.3. An Example: Squared Exponential Kernel

The squared exponential kernel, defined for X = R, by kse(x, x
′) = vk

(
−(x− x′)2/(2`2)

)
, is

among the most popular choices of kernels. Suppose that the measure used in defining the
K has normal density N (0, s2). In this case the eigenvalues of K are given by (Rasmussen
and Williams, 2006):

λm = vk

√
2a

A
Bm, (9)
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with a = 1/(4s2), b = 1/(2`2), c =
√
a2 + 2ab, A = a+ b+ c, B = b/A.

From the above expression, when B is near one, we should expect to need more inducing
features in order to bound the KL-divergence. This occurs when the observed data spans
many kernel lengthscales. For any lengthscale, the eigenvalues decay exponentially. This
asymptotic decay is closely connected to the smoothness of sample functions from the
prior, see Rasmussen and Williams (2006, Chapters 4,7). It has previously been shown that
truncating the kernel with M such that λM ≈ σ2noise/N eigenbasis functions leads to almost
no loss in model performance (Ferrari-Trecate et al., 1999). We prove the following:

Theorem 2 If the xi ∼ N (0, s′2) i.i.d. For sparse inference with eigenfunction inducing
features defined with respect to q(x) ∼ N (0, s2) with 2s′2 < s2 There exists an Ns,s′ such
that for all N > Ns,s′ inducing points inference with a set of M = cs′,s log(N) features
results in:

Pr(KL(Q‖P̂ ) > ε) < δ.

While the full proof is in Appendix B, we suggest why this should be true in the following
section.

4. Bounds on the Trace using Eigenfunction Features

Using the eigenfunction features, deriving a bound on t is straightforward. From (8),

(
KT
u,fKu,f

)
i,j

=
M−1∑
m=0

λmφm(xi)φm(xj).

Combining this with Mercer’s theorem yields the following lemma:

Lemma 3 Suppose the training data consists of N i.i.d. random variables drawn according
to probability density p(x) and we use M eigenfunction inducing features defined with respect

to a density q(x) such that k = maxx
p(x)
q(x) <∞, then

lim
N→∞

1

N
tr (Kf,f −Qf,f ) =

( ∞∑
m=M

λmEp[φm(xi)
2]

)
≤ k

∞∑
m=M

λm. (10)

For the squared exponential kernel, (10) is a geometric series, and has a closed form (see
Appendix B). An example of the bound on the expected value of the trace and the resulting
bound on the KL-divergence is shown in Figure 1. Under the assumed input distribution
in Lemma 3 as N tends to infinity for fixed M, the empirical eigenvalues in (5) approach
the λm so the expected value of 1

N t is asymptotically tight. In order to rigorously prove
Theorem 2 we need to understand the trace, not the expected value of its entries. In order
to achieve this, as well as to obtain bounds that are effective as M grows as a function of
N, we show that the square of the eigenfunctions has bounded second moment under q(x).
The details given in Appendix B.
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Figure 1: Log-linear plot of bounds (blue) on the trace (left) and KL-divergence (right)
plotted against the actual values (yellow) for a synthetic data set with N = 200,
x ∼ N (0, 52), vk = 1, `2 = 1.
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Appendix A. Proof of Lemma 1

Proof The proof has a similar spirit to that of (3) provided in Titsias (2014). Let R =
Qf,f + σ2noiseI.

Lupper − Llower =
t

2σ2noise
+

1

2

(
yTR−1y − yT (R + tI)−1y

)
=

t

2σ2noise
+

1

2

(
yT
(
R−1 − (R + tI)−1

)
y
)
. (11)

Since Qf,f is symmetric positive semidefinite, R is positive definite with eigenvalues bounded
below by σ2noise. Write, R = UΛUT , where U is unitary and Λ is a diagonal matrix with
non-increasing diagonal entries γ1 ≥ γ2 ≥ . . . ≥ γN ≥ σ2noise.

We can rewrite the second term (ignoring the factor of one half) in (11) as,

yT
(
UΛ−1UT −U(Λ + tI)−1UT

)
y = (UTy)T

(
Λ−1 − (Λ + tI)−1

)
(UTy).

Now define, z = (UTy). Since U is unitary, ‖z‖ = ‖y‖.

(UTy)T
(
Λ−1 − (Λ + tI)−1

)
(UTy) = zT

(
Λ−1 − (Λ + tI)−1

)
z

=
∑
i

z2i
t

γ2i + γit

≤ ‖y‖2 t

γ2N + γN t
. (12)

The last inequality comes from noting that the fraction in the sum attains a maximum
when γi is minimized. Since σ2noise is a lower bound on the smallest eigenvalue of R, we
have,

yT
(
R−1 − (R + tI)−1

)
y ≤ t‖y‖2

σ4noise + σ2noiset
,
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from which Lemma 1 follows.

Appendix B. Proof of Theorem

For inference with a squared exponential kernel and M eigenfunction inducing features
defined with respect to µ ∼ N (0, s2) a stronger version of Lemma 3 is the following:

Theorem 4 Suppose xi ∼ N (0, s′2) with s′ ≤ s then for all M ≥ 0,

lim
n→∞

1

N
t ≤ kλ0

BM

1−B
(13)

for k = s
s′ holds almost surely for all M ≥ 0. For 2s′2 < s2, for any α > 0

P
(
t > KNBM

)
≤ 1

α2N

(√
s2

s2 − 2s′2
− s2

s2 − s′2

)
(14)

where

K := 1.19(4cs2)1/2
vk

1−B

√
2a

A

(
α+

√
s2

s2 − s′2

)
.

Remark 5 This proof could likely be generalized for all s′ ≤ s via using a concentration
inequality based on the rth moment for 1 < r ≤ 2, for example those in Bahr and Esseen
(1965), in place of Chebyshev’s inequality.

The proof of the first part of the statement, (13), comes from the observation that if q is

the density associated to µ and p is the density the xi are drawn from max
x

p(x)
q(x) = p(0)

q(0) = k.

Note that here it is essential s′ ≤ s or else this ratio would not be bounded as x → ∞.
Then,

1

N
t =

1

N

N∑
i=1

∞∑
m=M

λmφ
2
m(xi)

=
∞∑

m=M

λm
1

N

N∑
i=1

φ2m(xi). (15)

The inner sum is an expectation (with respect to p) of i.i.d. random variables. By the
strong law of large numbers,

1

N

N∑
i=1

φ2m(xi)
a.s.−−→ Ep[φ

2
m(xi)] =

∫
|φm(x)2|p(x)dx

≤ k
∫
|φm(x)2|q(x)dx

= k. (16)
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This shows (13) holds as N tends to ∞ for any fixed M . As the countable intersection of
events that occur with probability one also occurs with probability one, this holds for all
M (simultaneously) almost surely.

For the probabilistic bound, we begin by establishing a term-wise bound on elements of
Kf,f −Qf,f that takes into account the locations of the training inputs.

Lemma 6 Let qi,j denote the i, jth entry in Qn,n and ki,j = k(xi, xj) denote the i, jth

entry in Kn,n, then

|ki,j − qi,j | ≤ 1.19
√

4cs2vk

√
2a

A

BM

1−B
exp

(
x2i + x2j

4s2

)
. (17)

holds for all pairs xi, xj.

Proof As in earlier proofs, we have

|ki,j − qi,j | =
∣∣∣ ∞∑
m=M

λmφm(xi)φm(xj)
∣∣∣,

We need to now take into account the location of the xi in this bound. For the squared
exponential kernel,

φm(x) =
(4cs)1/4√
m!2m

Hm(
√

2cx) exp(−(c− a)x2),

where Hm(x) is the mth Hermite polynomial, (Rasmussen and Williams, 2006), (we have
normalized the basis so ‖φm‖L2(µ) = 1).

We use the following bound on Hermite functions, obtained by squaring the bound in
Gradshteyn and Ryzhik (2014),

|Hm(xi)||Hm(xj)| < 1.19m!2me(x
2
i+x

2
j )/2.

Expanding into the definition of the φm we obtain

|ki,j − qi,j | =
√

4cs2 exp(a(x2i + x2j ))

∣∣∣∣∣
∞∑

m=M

λm
Hm(
√

2cxj)e
−cx2jHm(

√
2cxi)e

−cx2i

2mm!

∣∣∣∣∣
≤
√

4cs2 exp(a(x2i + x2j ))

∞∑
m=M

λm

∣∣∣Hm(
√

2cxj)e
−cx2j

∣∣∣ ∣∣∣Hm(
√

2cxi)e
−cx2i

∣∣∣
2mm!

≤ 1.19
√

4cs2 exp(a(x2i + x2j ))
∞∑

m=M

λm

= 1.19
√

4cs2 exp

(
x2i + x2j

4s2

)
vk

√
2a

A

BM

1−B
.

The first inequality (triangle inequality) is sharp on the terms effecting the trace since when
xi = xj the sum must be term-wise positive.
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Let Ai = exp
(
x2i
2s2

)
. It remains to derive a probabilistic bound on S :=

∑N
i=1Ai. We

first compute the moments of the Ai under the input distribution.

E[Ari ] =
1√

2πs′2

∫
R

exp

(
rx2

2s2

)
exp

(
−x2

2s′2

)
dx

=

√
s2

s2 − s′2r
, (18)

for rs′2 < s2.

From this we deduce Var(Ai) = E[A2
i ] − E[Ai]

2 =
√

s2

s2−2s′2 −
s2

s2−s′2 . Chebyshev’s in-

equality Chebyshev (1867) tells us that for any α > 0,

P

(
S > N

(
α+

√
s2

s2 − s′2

))
≤ V ar(A1)

α2N
. (19)

Theorem 4 follows.
In order to prove Theorem 2 choose M � 3 log(N) = log(N3) then KNBM � 1

N2 . For
large N, we have that this is an upper bound on the trace with high probability. Using this
upper bound in Lemma 1 gives Theorem 2 as a corollary.

9


	Introduction
	Bounds on the Marginal Likelihood
	Eigenvalues and Optimal Rate of Convergence
	Connection to the Nyström Approximation
	Eigenfunction Inducing Features
	An Example: Squared Exponential Kernel

	Bounds on the Trace using Eigenfunction Features
	Proof of Lemma 1
	Proof of Theorem

