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Advantages of Gaussian Process
Regression



Non-parametric flexibility

• Automatically add capacity as new data is observed.

• Retain uncertainty in regions with little data.



Model selection with GPR

• LML can balance data-fit and model complexity. Maximize log
marginal likelihood (LML) ⇒ automatically select hyperparameters.



Approximating Gaussian Process
Regression



Scalability concerns with GP regression

Do we really need to approximate? The posterior of a GP can
be computed with linear algebra.

• Direct implementations involve computing and factoring kernel
matrix (e.g. Cholesky) ⇒ costly.

• Many approximations developed:
• Variational (sparse) approximations (Titsias, 2009).
• Iterative approximations using e.g. conjugate gradient (Gibbs and

Mackay, 1997; Gardener, Pleiss, Bindel, Weinberger, Wilson, 2018).



Desiderata for Approximate GP Regression

What do we want from a scalable GP approximation?

• Accurately approximate non-parametric posterior.

• Fast, easy, effective hyperparameter selection.

• Don’t introduce lots of extra parameters that are hard to tune.



Sparse variational methods

• Non-parametric posterior, but limited capacity mean function!

• Easy to select hyperparameters, but biased!

• Easy to choose approximation parameters ⇒ Maximize ELBO.



Iterative methods

• Can give very accurate approximations to predictive mean.
• Bias can be small but

• stochastic objective ⇒ slower convergence, more parameters to pick.
• bias can be hard to assess.

• Setting approximation parameters is less automatic.
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Conjugate Gradient Lower Bound

Combine training speed and reliability of SGPR with low
bias and good predictive mean of iterative methods



The Conjugate Gradient Lower
Bound



The log marginal likelihood

Gaussian Process regression LML:

log pY (y ; θ) = c − 1

2
log |K|︸ ︷︷ ︸
log det.

− 1

2
y>K−1y .︸ ︷︷ ︸
quad. term

(1)

• We will upper bound both terms individually.

• Sparse GPR ELBO:

log |K| ≤ log |Q|+ 1

σ2
tr(K− Q) (2)

and

y>K−1y ≤ y>Q−1y , (3)

with Q a (specific) low-rank plus diagonal approximation to K.



Bounding the log determinant term

Technical Contribution 1 (Apply tighter bound to log-det.).

We use the arithmetic-geometric inequality ⇒ always at least as tight as
SGPR bound (similar bound in Vakili, Khezeli, Picheny 2021).

Bound on log |K|− log |Q|

SGPR tr(K−Q)
σ2 O(nm2) loose

O-SGPR1 tr
(
Q−1(K− Q)

)
O(n2m) tighter

CGLB n log
(

1 + tr(K−Q)
nσ2

)
O(nm2) tighter

CGLB-expensive n log

(
tr(Q−1K)

n

)
O(n2m) tightest

1Shi, Titsias, Mnih, 2020.



Bounding the quadratic term

Technical Contribution 2 (New bound on quadratic term).

Derive a bound on quadratic term that is tight if

• Works if SGPR would work OR

• If iterative method would work AND

• Allows us to determine when we should stop CG.

Derivation:

• Introduce auxiliary parameter v ∈ Rn as an approximation to K−1y .

Let r := y − Kv be the residual, then

y>K−1y = (r + Kv)>K−1(r + Kv)

= r>K−1r + 2r>v + v>Kv

≤ r>Q−1r + 2r>v + v>Kv .



Improving the inner loop of conjugate gradient

• Terminate CG based on a criteria that tells us running it more steps
could only improve the bound by ε.

• Restart CG solution at solution found in last iteration.
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Choosing approximation parameters

• Rank of Q: Like SGPR, higher rank is better. But low-rank doesn’t
result in as much bias as SGPR.

• Criterion for stopping CG: Directly relates to objective.

• Optimization procedure: L-BFGS converges quickly and has
established default settings. No need to tune learning rate.



Comparing CGLB to Sparse and Iterative Methods

Performance on real data:

• CGLB enjoys fast convergence, good predictive performance and is
easy to tune.
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Conclusions and an open problem

CGLB combines many of the benefits of SGPR and iterative methods.

• Reduce bias relative to SGPR using better bounds and CG.

• Deterministic lower bound objective ⇒ fast and stable training.

• Accurate mean approximation.

Still several limitations to overcome:

• Better posterior covariance estimates?

• Can an iterative approach refine the log determinant bound farther?

Open Problem.

We derived a lower bound on the LML. Does there exist a family of
posterior distributions such that this lower bound is the corresponding
ELBO?
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